AI & ML

Leveraging Unstructured Data: How Business Leaders Can Harness the Power of AI

By
Steve Hazelton
May 31, 2023
5 min read

Introduction:

In today's digital age, the sheer volume of data generated by businesses is staggering. Ironically, most of this data is unstructured and trapped in things like emails, support tickets, and phone calls. Until now, this meant that the only way to extract valuable insights was by using manual labor to categorize them. 

This is where the power of Artificial Intelligence (AI) comes into play. By harnessing AI, business leaders can unlock the hidden potential of unstructured data and gain a competitive edge. In this blog post, we will explore how business leaders can effectively leverage AI to extract valuable insights from unstructured data and drive innovation.

Understanding Unstructured Data:

Unstructured data refers to any information that lacks a predefined data model or organization. It includes text documents, social media posts, images, audio, videos, and more. Unstructured data is generated in abundance from various sources such as customer feedback, emails, surveys, social media platforms, and help desk interactions. The true value of unstructured data lies in its ability to reveal patterns, sentiments, and trends that can shape business strategies.

AI and Unstructured Data: Extract, Diagnose, Proact:

Artificial Intelligence, particularly techniques such as natural language processing (NLP) and deep learning, can process and analyze unstructured data with remarkable accuracy. By utilizing AI, business leaders can transform this seemingly chaotic mass of unstructured data into actionable insights.

Information Extraction:

  1. First, AI removes the ”manual labor tax” associated with leveraging unstructured data. AI efficiently extracts relevant information from unstructured text data, at scale, for a fraction of the cost of manual processing. Text mining techniques, including entity recognition, sentiment analysis, keyword extraction, and topic modeling, can be used to identify critical insights buried within vast amounts of unstructured text. This information can be invaluable for market research, competitive analysis, and trend forecasting.

Knowledge Diagnostics:

  1. The next step after extraction is leveraging this data to diagnose risks and opportunities. AI converts unstructured data into a powerful diagnostic tool. Unstructured data sources like customer emails and chat transcripts contain valuable information about individual products and processes. For example, a business leader may realize that just one feature is causing the majority of customer unhappiness. They might realize that a certain Account Representative is very good at improving sentiment. The possibilities for improving our businesses are almost endless.

Proactivity and Prediction:

  1. The “holy grail” of unstructured data is leveraging this information and knowledge to proact on and predict future events. By analyzing historical unstructured data, leaders can identify issues and monitor them going forward. For example, data might reveal that customers are more likely to cancel within 6 months of having a leadership change event. Not only will AI help leaders identify this warning sign, but by analyzing unstructured data in real-time, it will warn leaders and provide them with the opportunity to save revenue.

In the era of big data, unstructured data holds immense untapped potential. Business leaders who harness the power of AI can gain a competitive advantage by extracting valuable insights from this wealth of unstructured information. From sentiment analysis and text mining to predictive analytics, AI techniques provide the means to unlock the hidden value within unstructured data. By embracing AI and leveraging unstructured data, business leaders can make more informed decisions, drive innovation, and stay ahead in an increasingly data-driven world.

Similar articles

View all
Customer Churn

The Four Horsemen of Customer Churn

Joel Passen
December 4, 2024
5 min read

Our data scientists have combed through mountains of unstructured customer usage data to crack the code on proactively identifying accounts that are a churn risk. After analyzing thousands of signal combinations, we found that four key indicators—Budget Issues, Unhappiness, Value Issues, and Urgency—are the ultimate predictors of revenue risk.

Nearly every B2B tech and services company sees the same pattern: when these signals align, it’s time for action.

Hold on, what is unstructured usage data? It’s the raw, untamed data that tells you what customers are *really* doing and saying—not just what they’re willing to admit in a survey or conveyed by numbers of daily average logins (also critical but lacking context). Here are the harbingers of risk; when combined, they are what the team needs to act on right now. 🧯

1️⃣ Budget Issue: This signals a customer struggling to justify the cost, possibly due to tighter budgets or a perceived lack of value.

2️⃣ Unhappy: Customer dissatisfaction can stem from unmet expectations, unresolved issues, or lack of engagement.

3️⃣ Value Issue: If a customer doesn’t see the ROI, they’ll start questioning the worth of your service.

4️⃣ Urgent: An urgent flag indicates an immediate problem that requires rapid action. They are expressing a need to engage with a teammate now.

Customer Retention

Improving Revenue Retention in 2025

Joel Passen
November 15, 2024
5 min read

If improving revenue retention is a key priority in FY25, here is some food for thought. If you believe data is the essential foundation for improving retention, imagine the possibilities with 50-100x more data about your customers. Here’s the thing: Every business has this customer data, but 99% of businesses are sleeping on a data set that could change their business. It’s the unstructured data that’s sitting in ticketing systems, CRMs, chat systems, surveys, and the biggest silo by volume - corporate email systems. Most of us still rely on structured data like usage, click rates, and engagement logs to gauge our customers' health. However, structured data provides only a partial view of customer behavior and revenue drivers. Unstructured data—like customer emails, chats, tickets, and calls —holds the most valuable insights that, when leveraged, will significantly improve revenue outcomes.

Why Unstructured Data is Essential for Revenue GrowthImproving Customer Retention: Unstructured data helps businesses identify early warning signs of dissatisfaction, allowing them to create proactive interventions before customers churn. Repeated mentions of poor experiences, response lags, product-related frustration, and more in call transcripts, cases, and emails indicate potential churn risks. By identifying these trends while they are trending, businesses will improve retention.

Fueling Product Innovation: Let’s face it: Our customers bought a product or service. Post-sales teams don’t develop products and are limited in what they can directly impact. Product teams need more unbiased, unfiltered contextual customer data, and they need it consistently. Unstructured data provides real-time feedback on how customers use products and services. Businesses can analyze customer feedback from multiple channels to identify recurring requests and pain points. This data fuels product innovation and informs customer-led roadmaps that lead to higher engagement rates and more profound value. Developing products that directly respond to customer feedback leads to faster adoption, better advocacy, and a competitive advantage.

Identifying Expansion Opportunities: Unstructured data reveals customer needs and preferences that structured data often overlooks. Businesses can uncover untapped expansion opportunities by analyzing email, chats, and case feedback. These insights help identify additional products or services that interest customers, leading to new upsell or cross-sell possibilities. To drive immediate improvements in revenue retention, the key isn't pouring resources into complex churn algorithms, chatbots, or traditional customer success platforms—it's being more creative with the data you're already collecting. Start listening more closely to your customers, identify the patterns in their pain points, and share this knowledge with your peers who can improve your offerings. This is the year to start thinking outside of the box.

Customer Retention

Burton's Broken Zippers

Steve Hazelton
November 15, 2024
5 min read

Last year, I bought a pair of ski pants and the zipper fell out on the first chair lift. I called Burton, and they offered an exchange. New pants, first chair, same problem. Support informed me that I was required to return the pants for repair. The repairs would be completed after ski season. For the inconvenience, Burton offered me a 20% discount on my next purchase of skiwear. The next time I am in the market for skiwear that I can't wear during ski season, I will use that coupon.

I started my first business over 25 years ago. Since that day, I have lived in an almost constant state of fear that somehow, somewhere, things would get so broken that we'd treat a customer like this.

Let's be clear, no one who runs a business wants stuff like this to happen. Yet, it happens all the time.

If you run a software company, your engineering team will have usage tools and server logs to tell you when your product is "down" or running slowly. They can report which features are being used and which ones aren't. You'll learn that certain features in your product cost more to run than others, maybe because of a bad query, code, or something else. And you'll know what needs to be upgraded.

However, every time a customer contacts a business, they are "using" (or "testing") your product. If you sell ski pants, your product is ski pants, and your customer service team. If you sell software, your product is your tech and your customer service.

Yet, your customer-facing teams have very poor usage data, if any at all. Which feature of our service gets used the most (billing, success, support)? What are the common themes? Is one group working more effectively than the others? Does a team need an upgrade? 

(BTW, what costs more, your AWS bill or your payroll?)

The reason your customer-facing teams don't have usage data is because this data is "unstructured," and it is everywhere. Imagine if your engineering team needed to check 50 email inboxes, 1,000 phone recordings, a CRM, and a ticket system to get your product usage statistics. 

That's where your customer-facing teams are today. Until you can get answers from these systems as easily as an engineer can, you’ll continue to churn, annoy customers, and try to hire your way out of a retention problem. It won’t work.

How many customers will you have to lose before you try Sturdy?

Schedule Demo
A blue and gray logo with a black background
A number of different types of labels on a white backgroundA white background with a red line and a white background with a red line andA sign that says executive change and contact request
A white background with a red line and a blue lineA number of different types of logos on a white backgroundA pie chart with the percentage of customer confusion and unhappy
A number of graphs on a white background